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Abstract: This paper shows an analysis of MEMS (micro electro mechanical systems) due to Lorentz force and mechanical shock. 

The formulation is based on a modified couple stress theory, the von Kármán geometric nonlinearity and Reynolds equation as well.  

The model contains a silicon microbeam, which is encircled by a stationary plate. The non-dimensional governing equations and 

associated boundary conditions are then solved iteratively through the Galerkin weighted method. The results show that pull-in 

voltage is dependent on the geometry nonlinearity. It is also demonstrated that by increasing voltage between the silicon microbeam 

and stationary plate, the pull-in instability happens. 
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1. Introduction  

Development of microelectronics and IC (integrated 

circuit) technology are essential ingredients of  

MEMS (micro-electro-mechanical systems) which 

display low cost, fast response, mass production, and 

light weight [1-3]. Nowadays, researchers thoroughly 

have examined the behavior of MEMS, say, in 

relation to stability analysis of structural components 

compared to their similar implements. In this regard, 

Bagherinia et al. [4] presented a multi-physics model 

as well as optimization of a microbeam under 

electro-thermomechanical loading utilizing the 

second-order elastic beam theory in which the effect 

of the Lorentz force had been taken into account. 

Recently, Gkotsis et al. [5] developed an analytical 

model for MEMS magnetometers with consideration 

of the Lorentz force and piezo resistive principles. 

This, coupled with the fact that electrostatically 

actuated MEMS is basically nonlinear [6], exhibits 

                                                                 
Corresponding author: Emran Khoshrouye Ghiasi, M.Sc. 

in mechanical engineering, Eng., research fields: micro/nano 

mechanics, mechanical vibrations, smart materials.  
 

when the nonlinear electrostatic force is greater than 

the elastic resonating force, the pull-in instability 

happens [7]. The corresponding critical voltage and 

displacement are known principally as the pull-in 

voltage and displacement, respectively. To this end, 

Ansari et al. [8] constructed a nonlinear model of an 

electrically actuated rectangular nanoplate, based on 

the Gurtin-Murdoch theory, for determining the 

residual surface stress and boundary conditions on the 

pull-in voltage using GDQ (generalized differential 

quadrature) method. Langfelder et al. [9] analyzed 

theoretically and experimentally the instability of 

capacitive MEMS accelerometers when they are 

subjected to a constant voltage of ± 1.8𝑉. Xiao et al. 

[10] conducted a transient analys is of electrostatic 

actuated MEMS with piezoelectric layers based on 

MCST (modified couple stress theory). They have 

shown as a result of this trend that the voltage 

reduction leads to energy saving and increased 

reliability of the system. 

Given that shock leads microstructure to hit the 

stationary plate, particularly during fabrication, it 

would be described as an applied force over a short 
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period of time [11, 12]. On the other hand, it is 

undeniable that bending stresses result from shock 

acceleration in silicon or polysilicon fabricated 

MEMS [13]. 

Typically, damping in MEMS that result from 

viscous dissipation of surrounding fluid has been 

comprised two parallel plates as movable and fixed 

plates [14-16]. The airflow force, in the main, is 

deemed to be of two major factors [17]: electrostatic 

force and force in free space. On the other hand, 

friction between viscous gas layers will have serious 

implications for the damping. Chu [18] demonstrated 

the measurement of quality factor in free space and 

squeeze film damping for a micro- and 

nano-mechanical beam resonator. On the contrary, 

another case was experimentally studied by De 

Pasquale [19]; it is found that the global error on the 

quality factor is computed in the range 0.19 to 0.59 

percent for a rectangular silicon specimen. 

This paper is divided as follows: in section 2, 

problem formulation to achieve nonlinear response of 

silicon microbeam under the Lorentz force and 

mechanical shock is discussed. Subsequently, the 

solution procedure based on the Galerkin weighted 

method is explained in section 3 and the results are 

presented in terms of numerical examples in section 4. 

Finally, we conclude paper in section 6. 

2. Problem Statement 

Consider a fixed-fixed microbeam with length    

L, width b, thickness h, and gap width d, as shown in 

Fig. 1. Also, x, y, and z are the coordinates along the 

length, width, and thickness, respectively, and     

w(x,t) refers to transverse displacement of  

microbeam. It is true to mention that but for 

electrostatic actuation, microbeam would never have 

vibrated. In other word, by applying a voltage to the 

system, the microbeam will be deformed. Additionally,  

system is subjected to the Lorentz force and 

mechanical shock, and the air film between 

microbeam and stationary plate tends to squeeze into 

the environment. 

3. Governing Equations 

According to the Euler-Bernoulli beam theory [20], 

the displacement field can be expressed as Eq. (1) 

    (1) 

where, u and w are the axial and transverse 

displacement of a point on the midplane of the 

microbeam, respectively. Provided microbeam 

encounters with small slopes after deformation, the 

strain tensor can be approximated by the von 

Kármán-type nonlinear strain as 

 

(2) 

and written in terms of Hooke’s law as 

  (3)

 
 

 
Fig. 1  A fixed-fixed microbeam with the stationary plate. 
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In following based on modified couple stress theory 

[21], the strain energy for infinitesimal deformations 

is given by 

   (4) 

where, σij and εij are components of the Cauchy stress 

and strain tensors, respectively. These tensors can be 

written as 

             (5) 

         (6) 

where, mij and χij are deviatoric part of couple stress 

and the symmetric curvature tensors, respectively, and 

the rotation vector is defined as 

           (7) 

Herein substitution of Eq. (1) into Eqs. (5)-(7) 

yields [22] 

 

         (8) 

The potential energy of microbeam and variation of 

the transverse loading on system can be expressed as 

   (9) 

 

    (10) 

where, Fes, Fsh, and Flo are electrostatic force, 

mechanical shock, and Lorentz force, respectively. 

Likewise, the virtual work done by axial residual force 

and pressure effect is 

          (11) 

         (12) 

where, P is the pressure. In accord with the principle 

of minimum total potential energy, one can be 

obtained as 

    (13) 

By substitution of Eqs. (9)-(12) into Eq. (13), the 

nonlinear equations of motion are expressed as 

 (14) 

 

 

        (15) 

where, I, ε, V, and g(t) are the moment of inertia, 

vacuum permittivity (= 8.854187  × 10
-12

 F/m), 

applied voltage, and the half-sine shock profile, which 

is defined by Brown et al. [23] as 

(16) 

where, T and U̲(t) are the shock duration and unit step 

function. 
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As regards the pressure gradient through air gap is 

zero [24], the incompressible Reynolds equation can 

be written by both viscous and inertial effect within 

the fluid as Ref. [25]. 

   (17) 

where, μ and ρ are coefficients of viscosity and 

density, respectively.  

The corresponding boundary conditions for 

fixed-fixed microbeam are expressed as 

 

(18) 

       (19) 

    (20) 

     (21) 

Herein, it is assumed that ρA
𝜕²𝑢

𝜕𝑡²
 = 0 in Eq. (14) [26]. 

According to the boundary conditions given in Eq. 

(18), one can obtain as 

 

(22) 

Substituting above equation into Eq. (15) gives the 

equation of motion of microbeam as 

 

 

        (23) 

Considering the dimensionless parameters (listed in 

Table 1), dimensionless governing equations and 

corresponding boundary conditions of the system can 

be derived as 

 

(24) 

       (25) 

    (26) 

     (27) 

where, ĝ(t) is non-dimensional half-sine shock profile.  
 

Table 1  Dimensionless parameters. 
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4. Solution Procedure 

Based on the Galerkin weighted method [27], the 

dimensionless deflection involved in Eq. (24) can be 

expressed as 

      (28) 

where, ui(T̂) and φi(t) are the ith generalized 

coordinate and the ith non-dimensional linear 

undamped mode shape of the fixed-fixed microbeam, 

respectively. For simplicity, the dimensionless 

deflection can be written as 

        (29) 

where, 𝜁(T̂) is the midpoint deflection and ψ(X) can 

be determined as Ref. [28]. 

 

      (30) 

where 

       (31) 

It is noted that the motion of the microbeam can be 

simulated by solving Eqs. (24)-(31) with assuming 

that its zero initial condition. 

5. Results and Discussion 

In implementing the aforementioned techniques, 

some numerical investigations are now performed  

and discussed. The numerical integration of Eq. (24) 

is carried out until the error norm becomes less than 

10
-5

. 
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3
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microbeam under DC applied voltage and Lorentz 
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mechanical shock involved in Eq. (24), one can obtain 

as 

 (32) 

This example deals with the dynamic analysis of 

microbeam for which an analytical solution is 

available. The variation of applied voltage versus 

pull-in voltage for L = 450 μm is shown in Fig. 2. It is 

seen that by increasing the applied voltage to the 

system, the microbeam softens and the corresponding 

pull-in voltage decreases. In order to derive a 

universal expression for determining the pull-in 
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Fig. 2  Pull-in voltage values in different α1 ratios. 
 

 

Fig. 3  Influence of time on Θ in the presence of mechanical shock. 
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Fig. 4  Influence of x/L change on w/d where Vac = 9 V. 
 

 
Fig. 5  Convergence of pull-in voltage versus d in various Vac. 
 

actuation voltage is Vac = 9.05 V (or near 9.05 V), the 

behavior of system differs from others (see Fig. 5). It 

is due to the fact that the effect of electrostatic 

actuation to reduce the structural stability is 

undeniable.  

6. Conclusion 

In this paper, MCST in conjunction with the effect 

of Lorentz force and mechanical shock has been 

introduced to investigate nonlinear dynamic response 

of electrostatically actuated MEMS. To this aim, 

Reynolds equation was also used to obtain the effects 

of pressure between two plates. Afterwards the model 

was solved using the Galerkin weighted method. 

Finally it is indicated that as the ratio of dimensionless 

deflection to initial gap decreases, the results converge 

to the pull-in instability. Furthermore, the pull-in 

voltage decreases with applied voltage increasing. 
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