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Abstract: This paper considers the possibility of estimating continuous-time linear aircraft models by using the subspace identification. 
The outline of the subspace identification for estimating the continuous-time linear model is first mentioned. The identification 
simulation in which the subspace identification is then applied to the modeling of aircraft in the lateral motion is performed. As a result, 
the continuous-time linear aircraft model is appropriately estimated by the subspace identification if the amount of the measurement 
noise is not so much. 
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1. Introduction 

Modeling of aircraft is one of important design 

process for constructing flight control systems. This 

paper presents a modeling technique for aircraft based 

on the subspace identification. The subspace 

identification is to estimate the state-space matrices of 

the system to be identified based on the realization 

theory and is one of powerful system identification 

approaches [1, 2]. There has been few application of 

subspace identification to the modeling of aircraft. This 

paper then considers the possibility of the subspace 

identification as a technique for obtaining 

continuous-time linear aircraft models. The benefits of 

subspace identification are given as follows: (i) there is 

no modifications on the procedure for application to 

multi-input and multi-output systems, (ii) it is not so 

hard to determine the order of model through the 

singular value decomposition in the subspace 

identification calculation. On the other hand, since the 

subspace identification is to identify a discrete-time 

model, the transformation from the discrete-time to the 

continuous-time, called the inverse transformation in 

this paper, is performed to obtain the continuous-time 
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model. Then, alias elements may appear in the obtained 

continuous-time model. If the bandwidth of the modes 

included in the system to be identified is known in 

advance, alias elements are suppressed by giving the 

sampling frequency which is sufficiently larger than 

the bandwidth. As another point to be taken into 

consideration, the state variables of the model 

estimated by the subspace identification are not 

generally related to the physical variables of the system 

to be identified. To estimate the physical parameters in 

the system, the state variables of the estimated model 

have to be transformed into those of the corresponding 

physical system. If these manipulations can be 

performed, the subspace identification is applicable to 

modeling of aircraft. 

Linear aircraft models are generally composed by 

the characteristic dynamic modes [3], whose natural 

frequencies are roughly estimated from the frequency 

response. Furthermore, it is not unusual that all physical 

state variables can be obtained in the measurement 

systems of aircraft. Thus, the necessary conditions   

for application of the subspace identification have    

been arranged in aircraft modeling. This paper first 

presents the outline of the subspace identification for 

estimating the continuous-time linear aircraft model. 

The identification simulation in which the subspace 
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Fig. 1  An identification system. 
 

identification is then applied to the modeling of aircraft 

in lateral motion is performed. The effectiveness of the 

proposed technique is discussed in the identification 

simulation. 

2. Identification of Continuous-Time Linear 
Model by Subspace Identification 

This section describes the procedures of identifying 

the continuous-time LTI (linear time-invariant) system 

by the subspace identification. Since the subspace 

identification method used in this paper is standard 

such as N4SID, MOESP, the details of the subspace 

identification methods are referred in [1, 2]. 

A system to be identified is given by the following 

LTI system 

( ) ( ) ( )
( ) :

( ) ( ) ( )

x t Ax t Bu t
x

y t Cx t Du t

 
   


       (1) 

where, t is the continuous-time. ( ) mu t R  is the 

input, ( ) py t R  is the output and ( ) nx t R  is the 

state vectors, respectively. The measurable output is 

given by 

( ) ( ) ( )y t y t v t             (2) 

where, ( ) pv t R  is the measurement noise (Fig. 1). 

In this paper, it is assumed in Eq. (1) that 

( ) ( )y t x t                (3) 

That is, all state variables are measurable. Eq. (3) 

indicates 

, 0nC I D              (4) 

Then, the objective of system identification in this 

paper is to estimate matrices A and B in Eq. (1) as 

accurately as possible. 

The rest of this section shows the identification 

procedures. For identification, the following N+1 

paired input and the measured output signals which 

are obtained with a constant sampling time Ts are 

used. 

{ ( ), ( )} ( 0, , , )s su t y t t T NT      (5) 

For convenience hereafter, the discrete-time input 

which is obtained by sampling u(t) at t = kTs is written 

as: 

[ ] ( ) ( 0,1,2, )su k u kT k        (6) 

Other discrete-time signals are similarly denoted. 

Step 1: Using N+1 paired input and the measured 

output signals (5), the following discrete-time LTI 

model is estimated by a subspace identification 

method. 

[ 1] [ ] [ ]

[ ] [ ]
d d

d

z k A z k B u k

y k C z k

  
 

       (7) 

where, [ ] nz k R  is the state vector which is defined 

by the identification. 

Step 2: When Eq. (7) is regarded as a discrete-time 

LTI model with the zero-th order hold, the 

continuous-time LTI model is inversely transformed 

into: 

( ) ( ) ( )

( ) ( )
c c

c

z t A z t B u t

y t C z t

 
 


         (8) 

where, 

1
ln

00 0
d dc c

ms

A BA B

IT

  
   

   
,      (9) 

c dC C                 (10) 

Step 3: From Eq. (3), we have: 

( ) ( ) ( )cy t x t C z t            (11) 

If Cc is nonsingular, Eq. (8) is transformed into: 

1( ) ( ) ( )

( ) ( )
c c c c cx t C A C x t C B u t

y t x t

  





   (12) 



Identification of Continuous-Time Linear Aircraft Models Using Subspace Identification 

  

9

Remark 1: It should be noted that the model 

estimated in Step 1 must be strictly proper to keep Eq. 

(4). The definition of z is varied every identification 

calculation. Although you can use other hold 

assumption in Step 2, there are no advantages of 

others over the zero-th order hold. Moreover, to 

suppress alias elements due to the inverse 

transformation in Step 3 as small as possible, the 

sampling time Ts should be selected so that the 

Nyquist frequency is sufficiently larger than the 

natural frequencies of the identified system [4]; that is,  

( )sT
A




              (13) 

where, ρ(A) is the spectral radius of A. If Cc is singular, 

return to Step 1 and a discrete-time model is 

re-estimated by the subspace identification. In 

identification simulation which will be shown in the 

following section, there is few cases that Cc is 

singular. 

3. Identification Simulation of Aircraft 
Model 

This section shows the identification simulation of 

the continuous-time lateral linear aircraft model using 

the subspace identification. The state-space equation 

of the lateral motion of aircraft is first shown. The 

evaluation indexes used in this paper are given. The 

identification results are then shown. 

3.1 Lateral Model 

The state-space equation of the lateral motion of 

aircraft is given by Ref. [3], 

( ) ( ) ( )lat lat lat lat latx t A x t B u t       (14) 

where, 

[ ] , [ ]T T
lat lat a rx p r u      (15) 

The state vector xlat consists of the sideslip angle β, 

the roll rate p, the yaw rate r and the roll angle φ. The 

input vector ulat consists of the aileron deflection angle 

δa and the rudder deflection angle δr. Matrices Alat and 

Blat are given by: 

1 1,lat lat lat lat lat latA E M B E L        (16) 

where, 

0

0
, ,

0

0 1 0 0 0 0

a r

a r

a r

p r

p r
lat lat

p r

Y YY Y Y U g

L LL L L
M L

N N N N N

 

 

  

  
  
      
  
     

 

0 0 0 0

0 1 / 0

0 / 1 0

0 1 0 1

xz xx
lat

zx zz

U

I I
E

I I

 
  
 
 
  

     (17) 

In matrices Llat and Mlat, Yβ, Yp, … are the 

aerodynamic derivatives of the lateral model in the 

frame of the stability axis. U0 is the steady-state flight 

velocity. Furthermore, in matrices Elat, Ixx and Izz are 

the moments of inertia and Ixz (= Izx) is the product of 

inertia. 

There are three kinds of characteristic modes in the 

lateral model (14); the spiral mode denoted as “S”, the 

roll mode “R” and the Dutch roll mode “D”, 

respectively. Since these modes are strongly coupled 

with each other, almost all of the aerodynamic 

derivatives in the lateral model are related these three 

modes [3]. 

3.2 Evaluation Indexes 

It is desirable that the identification results are 

evaluated from the several points of view. This paper 

uses the following indexes. 

(I-1) Multiplicative error of aerodynamic 

derivative: Let the true and the estimated values of the 

aerodynamic derivative Yβ be Yβ
* and Ŷ , respectively. 

If Yβ
*≠0, the multiplicative error is defined as 

*

*

ˆ
( ) 100%

Y Y
Er Y

Y
 





       (18) 

The multiplicative errors of other derivatives are 

similarly defined. 
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(I-2) Error of characteristic mode: Let the 

characteristic mode be denoted as λ# where # is given 
by # { , , }S R D . Letting the true and the estimated 

values of characteristic mode λ# be λ#
* and #̂ , 

respectively, the error of characteristic mode is then 

defined as: 

*
# # #

ˆ( )               (19) 

(I-3) ν-gap metric: Let the transfer functions of the 

true and the estimated continuous-time linear models 

be P*(s) and ˆ( )P s , respectively, where s is the Laplace 

operator. The ν-gap metric is defined as Ref. [5] 

*ˆsup ( ( ), ( ))P j P j


          (20) 

where, 

1/ 2 1/ 2( , ) [( ) ( )( ) ]X Y I YY Y X I XX        

( )X s means the conjugate transfer function of X(s) 

and   means the maximum singular value. 

Remark 2: Index (I-1) evaluates the estimated 

aerodynamic derivatives which are included in the 

aircraft model. That is, (I-1) is a local evaluation index 

of the estimated model. Index (I-2) is the difference of 

the characteristic mode between the estimated and the 

true models in the complex-plane. Index (I-3) means a 

model error evaluated in the frequency region. The 

range of the δν is normalized as 0 ≤ δν ≤ 1. δν is 

essentially derived from the robust stability condition 

based on the normalized coprime factorization [5]. 

Letting K(s) be the transfer function of a 

continuous-time controller which is designed by using 

the estimated model ˆ ( )P s , the robust stability 

condition that K(s) stabilizes the true model P*(s) is 

given by 

Kb                 (21) 

where, bK is the normalized stability margin (0 ≤ bK ≤ 

1) [5]. Satisfying Eq. (21) means that not only K(s) 

stabilizes P*(s) but also ˆ( )P s  is valid for control 

design. 

3.3 Simulation Results 

The aircraft to be identified was referred from Ref. 

[6]. The true values of the lateral aerodynamic 

derivatives used in identification simulation are given 

by Table 1. The flight condition was given by the 

level flight whose flight velocity was U0 = 100 m/s. 

The input for exciting the aircraft was given by the 

white random signal whose amplitude was |δa|, |δr| < 3 

deg. The subspace identification method used was 

N4SID method [1, 2]. The sampling time was given 

by Ts = 0.01 s and the number of data was N = 1,000. 

As an index for defining the amount of the noise, 

this paper adopts the NSR (noise signal ratio) which is 

defined as follows. 

|| ||
NSR 100%

|| ||
s

s

v

y
        (22) 

where, {1, , }s p  , the norm in Eq. (22) means the 

Euclid norm of the sampling vector which consists of 

N+1 sampled data. That is, NSR in Eq. (22) indicates 

the amplitude ratio between the measurement noise 

and the true output. In this paper, ys of the lateral 

model was given by the side slip angle β. vs was given 

by the white noise. 

Figs. 2-4 show the identification results where NSR 

was given by NSR ≈ 50%. The random responses (Fig. 

2) and the frequency responses (Fig. 3) of the 

estimated models almost approximated those of the 

true models. The poles of the estimated models were 

located near those of the true models (Fig. 4). 

Figs. 5-7 show the identification results where NSR 

was given in the range of 0 ≤ NSR < 90% by 

approximately  10%  interval.  Fig.  5  shows the  

multiplicative error Er of the lateral aerodynamic 

derivatives. Fig. 6 shows the error of characteristic 
 

Table 1  Aerodynamic derivative in lateral model of aircraft. 

Yβ Yp Yr Lβ Lp Lr Nβ Np Nr Yδa  Yδr Lδa  Lδr Nδa  Nδr 

-15.566 0 0.835 -1.874 -0.971 0.264 1.061 -0.089 -0.211 0 3.139 4.540 0.417 0 -0.720
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Fig. 2  Random responses of β and p where NSR ≈ 50%. 
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Fig. 3  Frequency responses of lateral model where    

NSR ≈ 50%. 
 

−1.5 −1 −0.5 0 0.5
0

0.5

1

1.5
Pole locations in Lateral model

Real part

Im
ag

in
ar

y 
pa

rt

 

 
true
estimated

 
Fig. 4  Pole location of lateral model where NSR ≈ 50%. 
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Fig. 5  Error of lateral aerodynamic derivatives. 
 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6
Error of lateral characteristic modes

NSR  [%]

 

 
ε(λ

D
)

ε(λ
S
)

ε(λ
R

)

 
Fig. 6  Pole location of lateral model where NSR ≈ 50%. 
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Fig. 7  ν-gap metric and stability margin in lateral model. 
 

modes ε(λ#) of the lateral models. The upper figure in 

Fig. 5 shows the aerodynamic derivatives whose Er 

was less than 40% in the examined range, while the 

lower figure shows the others. Although there were 

some derivatives whose Er was large in the region of 

NSR<30%, the error of the characteristic mode in this 

region was not so large (Fig. 6). That is, these 

derivatives were not sensitive to the characteristic 

modes. The error of the characteristic modes was 

increased slowly in the region of NSR < 50% but 

steeply over the region. 

Fig. 7 shows the ν-gap metric δν with respect to 

NSR. According to the increase of NSR, δν was 

increased to 0.612. Fig. 7 also shows the stability 

margin bK [5] in which the estimated models were 

used to design an LQR state-feedback law. bK was 

obtained as bK ≈ 0.57 for the examined range of NSR. 

That is, the robust stability condition (21) was 

satisfied in the region of NSR < 85%. 

Summarizing the identification simulation, the 

characteristic modes and the ν-gap metric of lateral 

linear aircraft models were not so varied under the 

presence of the measurement noise although there 

were some aerodynamic derivatives whose 

multiplicative error was large. It is concluded that the 

continuous-time linear aircraft model was 

appropriately estimated by the subspace identification 

in the region of NSR < 50%. 

4. Concluding Remarks 

This paper has considered the possibility of 

estimating continuous-time lateral linear aircraft 

models by using the subspace identification. The 

continuous-time linear aircraft model was 

appropriately estimated by the subspace identification 

if the amount of the measurement noise was not so 

much. This paper treated the white random signal as 

the measurement noise. When the noise is colored, it 

is possible to suppress the estimation bias due to the 

colored measurement noise by using subspace 

identification methods such as PI-MOESP or 

PO-MOESP [1, 2] in Step 1. The identification 

simulation for the colored noise is also similar to that 

for the white noise as shown in this paper. 
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