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Abstract: This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely 
approximates the theoretically derived stiffness coefficients. Factors that influence the accuracy of the solution are studied using two 
columns, two braced frames, and one unbraced frame. Discussion is provided when the new geometric stiffness matrix can be used to 
improve the buckling load analysis results and when it may provide only nominal additional benefit. 
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1. Introduction  

This paper presents and assesses the performance of 
a new geometric stiffness matrix to potentially reduce 
the required number of elements per member of a linear 
buckling analysis. The effects of nonlinear material 
behavior are not considered in this study as the majority 
of routine building design considers only linear, elastic 
material behavior [1]. Assessment of the new geometric 
stiffness matrix is conducted on two columns and three 
frames with known “exact” closed-form solutions for 
the elastic critical buckling load [2]. The frames were 
modeled in the MASTAN2 [3] analysis software. The 
software is capable of performing a linear buckling 
analysis using the inverse iteration method [4]. All 
members were modeled as planar 6-dof line elements 
with elastic material behavior. Models have perfect 
geometries when comparing the results with the “exact” 
solutions. 

2. New Geometric Stiffness Matrix 

A nonlinear tangent stiffness matrix for a beam-column 
element was developed by Ekhande et al. [5] using 
stability functions to account for the effect of axial 
force on flexural stiffness. The explicit expressions for 
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the stability functions of a planar beam-column are 
given in Eqs. (1)-(5). 

𝛽 = 𝐿ඨ 𝑃𝐸𝐼 (1)

𝐶ଵ = 𝛽ଶሺ1 − 𝑐𝑜𝑠𝛽ሻ2𝑠𝑖𝑛𝛽 ቀ𝑡𝑎𝑛 ఉଶ − ఉଶቁ (2)

𝐶ଶ = 𝛽ሺ𝑠𝑖𝑛𝛽 − 𝛽𝑐𝑜𝑠𝛽ሻ2𝑠𝑖𝑛𝛽 ቀ𝑡𝑎𝑛 ఉଶ − ఉଶቁ (3)

𝐶ଷ = 𝛽ሺ𝛽 − 𝑠𝑖𝑛𝛽ሻ2𝑠𝑖𝑛𝛽 ቀ𝑡𝑎𝑛 ఉଶ − ఉଶቁ (4)

𝐶ସ = 𝛽ଷ𝑠𝑖𝑛𝛽2𝑠𝑖𝑛𝛽 ቀ𝑡𝑎𝑛 ఉଶ − ఉଶቁ (5)

Using the geometric stiffness matrix as developed by 
Yang and McGuire [6] for use in an updated 
Lagrangian nonlinear elastic analysis, the stability 
functions appear in the global stiffness matrix for a 
planar beam element. They presented simplified 2nd-
order expressions for the stability functions in their 
geometrical stiffness matrix Kg as given in Eqs. (6)-(9). 
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These equations have been used extensively over the 
decades and form the basis of the original Kg in 
MASTAN2 [3]. 𝐶ଵ = 6 − 𝛽ଶ10 (6)

𝐶ଶ = 4 − 2𝛽ଶ15  (7)

𝐶ଷ = 2 + 𝛽ଶ30 (8)

𝐶ସ = 12 − 6𝛽ଶ5  (9)

These simplified 2nd-order expressions begin to 
deviate from the “exact” expressions when β > 2 as 
illustrated in Figs. 1-4. In order to reduce this error, 
while maintaining the simplicity and numerical 
stability of a 6th-order polynomial expression, Eqs. 
(10)-(13) were developed based on a nonlinear 
regression analysis of data produced using β increments 
of 0.01 (r2 = 0.999) in Eqs. (2)-(5). These equations 
form the basis of the new Kg and were added to the 
source code of MASTAN2 [3]. 𝐶ଵ = 6 − 1,031𝛽ଶ10,000 − 227𝛽5,000,000 (10)

𝐶ଶ = 4 − 1,403𝛽ଶ10,000 − 733𝛽5,000,000 (11)

𝐶ଷ = 2 + 743𝛽ଶ20,000 + 2𝛽19,763 (12)

𝐶ସ = 12 − 603𝛽ଶ500 − 466𝛽5,128,205 (13)

3. Braced Columns and Frames 

The relative error is used to evaluate each modeled 
condition as given in Eq. (14) where P is determined 
from closed-form equations [2] and Pcr is determined 
from an elastic buckling analysis in MASTAN2 [3]. 
Using the original Kg and the new Kg in MASTAN2, 
Column 1 in Fig. 5 has β = π in Eq. (15) and P = π2 in 
Eq. (1). Relative Error = Pୡ୰ − 𝑃𝑃 ∙ 100% (14)𝑠𝑖𝑛𝛽 = 0 (15)

 
Fig. 1  2nd-order and 6th-order approximations for C1. 
 

 
Fig. 2  2nd-order and 6th-order approximations for C2. 
 

 
Fig. 3  2nd-order and 6th-order approximations for C3. 
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Fig. 4  2nd-order and 6th-order approximations for C4. 
 

 
Fig. 5  Column 1. 
 

Table 1  Column 1 analysis conditions and results. 

 
 

As given in Table 1, high relative errors are produced 
with Pref = 1 when using only one element to model the 
column, but the new expressions give a relative error of 
less than one percent when using only one element 
when Pref = P. The old expressions give good results 
when two or more elements are used, and there is no 

Pref effect when four elements are used. 
Column 2 in Fig. 6 has β = 4.49341 in Eq. (16) and 

P = 20.1907 in Eq. (1). 𝑡𝑎𝑛𝛽 − 𝛽 = 0 (16)
As indicated in Table 2, high relative errors are 

produced with Pref = 1 when only one element is used, 
but the new expressions give a relative error of less than 
one percent when using only one element when Pref = 
P. The old expressions give comparable results only 
when four elements are used. 

Frame 1 in Fig. 7 is used to study the effect of 
differing column and beam stiffnesses on the modeling 
results. The γ = 4.6, 8 and 24 conditions in Table 3 
produce β = 4.2152, 4.32205 and 4.43275 in Eq. (18) 
and P = 17.7679, 18.6801 and 19.6493 in Eq. (1), 
respectively. 𝛾 = 𝐼𝐿𝐼𝐿 (17)

𝑡𝑎𝑛𝛽 − 3𝛾𝛽𝛽ଶ + 3𝛾 = 0 (18)
 

 
Fig. 6  Column 2. 
 

Table 2  Column 2 analysis conditions and results. 

 

Pref Elem/Mem Pcr Rel. Error
1 1 12.00 21.59

9.8696 1 12.00 21.59
Orig. Kg 9.8696 2 9.944 0.75

9.8696 4 9.875 0.05
1 4 9.875 0.05
1 1 11.26 14.09

9.8696 1 9.921 0.52
New Kg 9.8696 2 9.820 -0.50

9.8696 4 9.844 -0.26
1 4 9.844 -0.26

Pref Elem/Mem Pcr Rel. Error
1 1 30.00 48.59

20.19 1 30.00 48.59
Orig. Kg 20.19 2 20.71 2.58

20.19 4 20.23 0.20
1 4 20.23 0.20
1 1 28.48 41.06

20.19 1 19.99 -0.99
New Kg 20.19 2 20.15 -0.20

20.19 4 20.11 -0.40
1 4 20.11 -0.40
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Fig. 7  Frame 1. 
 

Table 3  Frame 1 analysis conditions and results. 

 
 

The new Kg gives good results when using one 
element per member with Pref = P, but four elements 
per member are needed with the old expressions to give 
comparable results to those with the new expressions. 
As with the two columns, high relative errors occur 
with Pref = 1 when using only one element per member. 

Frame 2 in Fig. 8 is used to study the effect of the 
number of elements per member on the relative error. 
The γ = 2/3 condition in Table 4 produces β = 3.53992 
in Eq. (20) and P = 12.5310 in Eq. (1). 𝑐 ൌ 1𝛽ଶ ൬1 െ 𝛽𝑡𝑎𝑛𝛽൰ (19)

൬ 1𝑐ଶ  12𝛾𝑐  24𝛾ଶ൰ ൌ 0 (20)

As with the previous examples, high relative errors 
occur with Pref = 1 when using only one element per 
member, but there is no Pref effect when four elements 
per member are used. The new expressions give a 
relative error of less than one percent when using only 
one element when Pref = P, but two or more elements  

 
Fig. 8  Frame 2. 
 

Table 4  Frame 2 analysis conditions and results. 

 
 

are needed to obtain comparable errors with the old 
expressions. 

4. Unbraced Frame 

The new 6th-order polynomial expressions were also 
studied using one unbraced frame with a known critical 
buckling load equation [2]. The unbraced frame in Fig. 
9 was used to investigate the Pref requirements and the 
number of elements per member that are needed to 
achieve accurate critical buckling load results. 

Frame 3 in Fig. 3 is used to study the Pref effect and 
the number of elements per member on the relative 
error. The γ = 2/3 condition in Table 5 produces β = 
1.29913 in Eq. (21) and P = 1.6877 in Eq. (1). When 
using only one element per member and Pref = 1, the 
relative errors are very small when using either the old 
or new polynomial expressions in Kg. There is also little 
beneficial effect to increasing the number of elements 
per member or to use Pref = P with the unbraced frame. 𝛽ଶ ൬ 1𝑐ଶ  12𝛾𝑐  24𝛾ଶ൰ െ 8𝛾𝑐 ൬1𝑐  3𝛾൰ ൌ 0 (21)

Pref γ Elem/Mem Pcr Rel. Error
1 4.6 1 25.64 44.31

17.768 4.6 1 25.64 44.31
Orig. Kg 17.768 4.6 4 17.74 -0.16

18.680 8 1 27.27 45.99
19.649 24 1 28.95 47.33

1 4.6 1 24.21 36.26
17.768 4.6 1 17.56 -1.17

New Kg 17.768 4.6 4 17.65 -0.66
18.680 8 1 18.44 -1.28
19.649 24 1 19.37 -1.42

Pref γ Elem/Mem Pcr Rel. Error
1 0.667 1 16.24 29.61

12.53 0.667 1 16.24 29.61
Orig. Kg 12.53 0.667 2 12.64 0.88

12.53 0.667 4 12.53 0.00
1 0.667 4 12.53 0.00
1 0.667 1 15.24 21.63

12.53 0.667 1 12.54 0.08
New Kg 12.53 0.667 2 11.95 -4.63

12.53 0.667 4 11.89 -5.11
1 0.667 4 11.89 -5.11
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Fig. 9  Frame 3. 
 

Table 5  Frame 3 analysis conditions and results. 

 

5. Conclusions 

This paper presented a new geometric stiffness 
matrix with 6th-order polynomial expressions for the 
coefficients that more closely approximate the 
theoretically derived stability functions. The factors 
that influenced the accuracy of the solution scheme 
were studied using two columns, two braced frames, 
and one unbraced frame. It was found that the new 

geometric stiffness matrix gave improved results only 
when the structures were braced and Pref was close to 
the critical buckling load. Under these conditions, it 
was found that only one element per member was 
needed to obtain excellent results, and this held true 
over a wide range of beam-to-column stiffness ratios of 
braced frames. The critical buckling load study of the 
unbraced frame revealed there was no advantage to 
using the new geometric stiffness matrix; this was true 
regardless of the number of elements used per member 
and the Pref load. 
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Pref γ Elem/Mem Pcr Rel. Error
1 0.667 1 1.691 0.20

1.6877 0.667 1 1.691 0.20
Orig. Kg 1.6877 0.667 2 1.687 -0.04

1.6877 0.667 4 1.687 -0.04
1 0.667 4 1.687 -0.04
1 0.667 1 1.691 0.20

1.6877 0.667 1 1.682 -0.34
New Kg 1.6877 0.667 2 1.685 -0.16

1.6877 0.667 4 1.687 -0.04
1 0.667 4 1.687 -0.04


