![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
| Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Luis De Garrido1,2,3
Full-Text PDF
XML 54 Views
DOI:10.17265/2162-5263/2025.05.004
1. PhD Architect, PhD Computer Engineer, PhD Fine Arts, PhD Cognitive Neuroscience, PhD History of Art, PhD st Building Engineering, Universitat Politècnica de València, Spain 2. PhD st Medicine, PhD student Aerospatial Engineering, Universidad Politécnica de Madrid, Spain 3. AAA Research Center, 46022 Valencia, Spain
This study shows a technical, bioclimatic, and sustainable analysis of the first demountable house built entirely from glass components, Vitrohouse. The technical analysis details the construction challenges overcome to create a demountable house using only flat glass for all components (foundations, slabs, supporting structure, beams, roof, envelope, furnishings, kitchen fixtures, appliances). Secondly, we analyze the thermal and bioclimatic behavior of this demountable all-glass house to evaluate its energy efficiency. We also assess the contribution of Vitrohouse’s bioclimatic design to its sustainability level, using 11 of the most internationally recognized GBRSs (Green Building Rating Systems), demonstrating that it achieves a higher degree of sustainability than a conventional, non-bioclimatic home of the same size. Thirdly, we analyze the contribution of Vitrohouse’s demountable nature, showing that it has a higher level of sustainability than a conventionally built house. Finally, the sustainable analysis of its demountability is quantified using 11 GBRSs. The results show that it is perfectly feasible to construct buildings solely from flat glass, achieving high energy efficiency and sustainability. Furthermore, the glass components can be easily disassembled and reused, or recycled to manufacture new components with minimal energy consumption.
Flat glass construction, house made with glass, bioclimatic design, sustainable assessment, demountable construction, Green Building Rating System.
Luis De Garrido,Vitrohouse. A Demountable House Built Entirely with Flat Glass. Technical, Bioclimatic, and Sustainable Analysis,Journal of Environmental
Science and Engineering
B 14
(2025) 225-254 doi:10.17265/2162-5263/2025.05.004
[2] Gloag, J. 2022. The Place of Glass in Building. London: Routledge, 7-14. https://doi.org/10.1201/9781003332701.
[3] Maiti, H. S. 2022. “Structural and Functional Properties of Architectural Glass.” In Future Landscape of Structural Materials in India, pp. 211-31. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-
16-8523-1_9.
[4] Moro, J. L. 2024. “Glass Products.” In Building-Construction Design—From Principle to Detail. Berlin, Heidelberg: Springer Vieweg. https://doi.org/10.1007/978-3-662-61742-7_23.
[5] Naqash, M. T., Formisano, A., and Farsangi, E. N. 2021. “Structural Assessment of Glass Used in Façade Industry.” Structures 33: 4817-27. Oxford: Elsevier. https://doi.org/10.1016/j.istruc.2021.07.059.
[6] Wiederhorn, S. M., and Clarke, D. R. 2022. “Architectural Glass.” Annual Review of Materials Research 52: 561-92. https://doi.org/10.1146/annurev-matsci-101321-014417.
[7] Žegarac Leskovar, V., and Premrov, M. 2021. “A Review of Architectural and Structural Design Typologies of Multi-storey Timber Buildings in Europe.” Forests 12 (6): 757. https://doi.org/10.3390/f12060757.
[8] Borrallo-Jiménez, M., Lopez De Asiain, M., Esquivias, P. M., and Delgado-Trujillo, D. 2022. “Comparative Study Between the Passive House Standard in Warm Climates and Nearly Zero Energy Buildings under Spanish Technical Building Code in a Dwelling Design in Seville, Spain.” Energy and Buildings 254: 111570. https://doi.org/10.1016/j.enbuild.2021.111570.
[9] Carter, C., and Zhao, J. 2018. “Passivhaus Lived Experience: More Than a Spreadsheet.” PLEA 2018, Conference on Passive and Low Energy Architecture, 2018, December 10-12, Hong Kong, China. http://eprints.lincoln.ac.uk/id/eprint/35349.
[10] Colclough, S., O’Leary, T., Hewitt, N., and Griffiths, P. 2017. “The Near Zero Energy Building Standard and the Passivhaus Standard—A Case Study.” In Design to Thrive: Proceedings Volume 1, PLEA 2017 Conference, pp. 385-92. https://pure.ulster.ac.uk/en/publications/
the-near-zero-energy-building-standard-and-the-passivhaus-standar-2.
[11] Costanzo, V., Fabbri, K., and Piraccini, S. 2018. “Stressing the Passive Behavior of a Passivhaus: An Evidence-Based Scenario Analysis for a Mediterranean Case Study.” Building and Environment 142: 265-77. https://doi.org/10.1016/j.buildenv.2018.06.035.
[12] De Garrrido, L. 2012. Self-Sufficient Green Architecture. Barcelona: Monsa. ISBN:978-84-15223-76-4.
[13] De Garrrido, L. 2014. Zero Energy Architecture. Barcelona: Editorial Monsa. ISBN:978-84-15829-54-6.
[14] De Garrrido, L. 2014. Extreme Bioclimatic Architecture. Barcelona: Monsa. ISBN:978-84-15829-55-3.
[15] Lavaf Pour, Y. 2017. “Self-Shading Facade Geometries to Control Summer Overheating in UK Passivhaus Dwellings for Current and Future Climate Scenarios.” Doctoral dissertation, University of Liverpool. https://doi.org/10.17638/03009183.
[16] Zhao, J., and Carter, K. 2016. “Barriers and Opportunities in the Design and Delivery of Social Housing Passivhaus for Adaptive Comfort.” Proceedings of 9th Windsor Conference: Making Comfort Relevant. Cumberland Lodge, 2016, April 7-10, Windsor, United Kingdom. https://eprints.lincoln.ac.uk/id/eprint/32463/1/WC16_Zhao.pdf.
[17] Liu, C., Mohammadpourkarbasi, H., and Sharples, S. 2020. “Analysing Energy Savings and Overheating Risks of Retrofitting Chinese Rural Dwellings to the Passivhaus EnerPHit Standard.” PLEA 2020, 35th International Conference on Passive and Low Energy Architecture, A Coruña, Spain. https://livrepository.liverpool.ac.uk/id/
eprint/3097751.
[18] Mitchell, R., and Natarajan, S. 2020. “UK Passivhaus and the Energy Performance Gap.” Energy and Buildings 224: 110240. https://doi.org/10.1016/j.enbuild.2020.110240.
[19] Saldanha, C. M., and O’Brien, S. M. 2016. “A Study of Energy Use in New York City and LEED-Certified Buildings (ASHRAE and IBPSA-USA SimBuild 2016).” Building Performance Modeling Conference, Salt Lake City, UT, August 8-12, 2016.
[20] De Garrido, L. 2025. “Conceptual Thermodynamic Analysis and Energy Efficiency of Buildings Based on the Position of Insulation and Thermal Inertia.” International Congress of the Home Sector—Designing What Comes NEXXT, 28 October 2025. Leiria. Portugal. Chamber of Commerce and Industry.
[21] De Garrido, L., and Paya-Laforzeta, I. 2025. “Aportación del diseño bioclimático al nivel de sostenibilidad de los edificios.” International Congress iENER, 3-4 July 2025. Universidad Politécnica de Madrid. Mining and Energy Engineering Faculty.
[22] De Garrido, L., and Picco, N. 2025. “Ventajas sostenibles y eficiencia energética de la construcción modular y bioclimática.” International Congress iENER, 3-4 July 2025. Universidad Politécnica de Madrid. Mining and Energy Engineering Faculty.
[23] Al-Muslih, A., and Al-Hadithy, L. 2019. “Performances of Steel-Concrete Composite Construction with Demountable Shear Connectors—Review.” IOP Conference Series: Materials Science and Engineering 518 (2): 022058. http://dx.doi.org/10.1088/1757-899X/518/2/022058.
[24] Boben Paul, E. 2022. “Design of a Demountable Steel Timber Floor System: Design Rules and Recommendations for the Application of a Demountable Steel Timber Floor System.” Master’s thesis, Delft University of Techology, Faculty of Civil Engineering and Geosciences, Delft.
[25] Braendstrup, C. 2017. “Conceptual Design of a Demountable, Reusable Composite Flooring System.” Master’s thesis, Delft University of Technology.
[26] Girão Coelho, A., Lawson, R., and Aggelopoulos, E. 2019. “Optimum Use of Composite Structures for Demountable Construction.” Structures 20: 116-33. https://doi.org/10.1016/j.istruc.2019.03.005.
[27] He, J., Suwaed, A., Vasdravellis, G., and Wang, S. 2021. “Shear Performance of a Novel Demountable Connector for Reusable Steel-Concrete Composite Structures.” In Life-Cycle Civil Engineering: Innovation, Theory and Practice, pp. 775-81, edited by A . Chen, X. Ruan, and D. Frangopol. London: CRC Press.
[28] Kollna, M. 2018. “Demountable Prototype House—From Facade to Water tap.” Mauerwerk—European Journal of Masonry 22 (1): 38-43. https://doi.org/10.1002/dama.
201700026.
[29] Wang, J., Uy, B., and Li, D. 2018. “Analysis of Demountable Steel and Composite Frames with Semi-rigid Bolted Joints.” Steel and Composite Structures 28 (3): 363-80. https://doi.org/10.12989/scs.2018.28.3.363.
[30] Wang, J., Uy, B., Thai, H.-T., and Li, D. 2018. “Behaviour and Design of Demountable Beam-to-Column Composite Bolted Joints with Extended End-Plates.” Journal of Constructional Steel Research 144: 221-35. https://doi.org/10.1016/j.jcsr.2018.02.002.
[31] Akanbi, L., Oyedele, L., Omoteso, K., Bilal, M., Akinade, O., Ajayi, A., Dávila Delgado, J. M., and Owolabi, H. 2019. “Disassembly and Deconstruction Analytics System (D-DAS) for Construction in a Circular Economy.” Journal of Cleaner Production 223: 386-96. https://doi.org/10.1016/j.jclepro.2019.03.172.
[32] Brambilla, G., Lavagna, M., Vasdravellis, G., and Castiglioni, C. 2019. “Environmental Benefits Arising from Demountable Steel-Concrete Composite Floor Systems in Buildings.” Resources, Conservation and Recycling 141: 133-42. https://doi.org/10.1016/j.resconrec.
2018.10.014.
[33] Cruz Rios, F., Chong, W., and Grau, D. 2015. “Design for Disassembly and Deconstruction—Challenges and Opportunities.” Procedia Engineering 118: 1296-304. https://doi.org/10.1016/j.proeng.2015.08.485.
[34] García Marín, A., Barrios Corpa, J., Terrados Cepeda, J., de la Casa Higueras, J., and Aguilera Tejero, J. 2015. “Self-Sufficient Prefabricated Modular Housing: Passive Systems Integrated.” In Renewable Energy in the Service of Mankind Vol. I, pp. 659-74, edited by A. Sayigh. Cham: Springer. https://doi.org/10.1007/978-3-319-17777-9_60.
[35] Liu, C., Mao, X., He, L., Chen, X., Yang, Y., and Yuan, J. 2022. “A New Demountable Light-Gauge Steel Framed Wall: Flexural Behavior, Thermal Performance and Life Cycle Assessment.” Journal of Building Engineering 47: 103856. https://doi.org/10.1016/j.jobe.2021.103856.
[36] Nam, S., Yoon, J., Kim, K., and Choi, B. 2020. “Optimization of Prefabricated Components in Housing Modular Construction.” Sustainability 12 (24): 10269. https://doi.org/10.3390/su122410269.
[37] Negrin, F., and Plitt, T. 2019. “Designer Demountable.” Sanctuary: Modern Green Homes 48: 16-21. https://www.jstor.org/stable/26906361.
[38] Ortlepp, S., Masou, R., and Ortlepp, R. 2015. “Demountable Construction for Sustainable Buildings.” In High Performance Fiber Reinforced Cement Composites (HPFRCC), Vol. 7, pp. 441-8. Stuttgart.
[39] Ortlepp, S., Masou, R., and Ortlepp, R. 2017. “Green Construction Methods of Buildings Capable for Disassembly to Support Circular Economy.” In Challenges for Technology Innovation: An Agenda for the Future, Chapter 5, edited by F. da Silva, H. Bártolo, P. Bártolo, R. Almendra, F. Roseta, H. Almeida, and A. Lemos. London: Taylor & Francis Group. https://doi.org/10.1201/9781315198101.
[40] Reinhardt, H. 2018. “Demountable Concrete Structures—An Energy and Material Saving Building Concept.” International Journal of Sustainable Materials and Structural Systems 1 (1): 18-28. http://dx.doi.org/10.1504/IJSMSS.2012.050452.
[41] Salama, W. 2018. “Design for Disassembly as an Alternative Sustainable Construction Approach to Life-Cycle-Design of Concrete Buildings.” Doctoral thesis, Gottfried Wilhelm Leibniz University. https://doi.org/10.15488/5121.
[42] De Garrido, L. 2025. “Aportación de los sistemas estructurales desmontables de hormigón prefabricado en el nivel de sostenibilidad de un edificio.” International Congress EDIFICATE, 13-14 November 2025. Burgos University. Building Engineering Faculty.
[43] De Garrido, L. 2025. “Quantifying the Joint Contribution of Demountable Construction and Bioclimatic Design to a Building’s Sustainability. Case Study: Beardon Eco-House.” Journal of Sustainable Development 18 (6): 133-59. https://doi.org/10.5539/jsd.v18n6p133.
[44] De Garrido, L. 2012. A New Paradigm in Architecture. Barcelona: Monsa. ISBN:978-84-152-2375-7.
[45] Vitrohouse. 2024. Accessed 13 September 2025. https://luisdegarrido.com/es/Vitrohouse-luis-de-garrido-vivienda-ecologica-bioclimatica-autosufficiente-con-consumo-energetico-cero-real-a-precio-convencional-2/.
[46] De Garrido, L., and Paya-Laforzeta, I. 2025. “Análisis comparativo de los principales sistemas de evaluación sostenible de edificios.” International Congress EDIFICATE, 13-14 November 2025. Burgos University. Building Engineering Faculty.
[47] ASGB. 2019. “Assessment Standard for Green Building”. Accessed 13 September 2025.
https://www.eia543.com/documents/14%E5%BB%BA%E7%AD%91%E8%AE%BE%E8%AE%A1%26%E5%AE%A4%E5%86%85%E7%A9%BA%E6%B0%94%E6%B1%A1%E6%9F%93%E7%A0%94%E7%A9%B6/%E7%BB%BF%E8%89%B2%E5%BB%BA%E7%AD%91%E8%AF%84%E4%BB%B7%E6%A0%87%E5%87%86%EF%BC%88GB%20T%2050378-2019%EF%BC%89.pdf.
[48] BEAM. 2024. “Building Environmental Assessment Method”. HK-BEAM Plus. 4/04 New Buildings. Technical Manual. Accessed 13 September 2025.
https://www.ibeam.hk/public/knowledgeDatabase/?tab=downloadArea https://www.beamsociety.org.hk/files/_4-04%20New%20Buildings%20(Full%20Version).pdf. https://www.beamsociety.org.hk/en/BEAM-Plus/BEAM-Plus-New-Buildings.
[49] BREEAM. 2019. “Building Research Establishment Environmental Assessment Method”. BREEAM Group Worldwide.
https://www.breeam.com/worldwide.
[50] CEDES. 2024. “Comprehensive Environmental Design and Evaluation System”. CEDES Technical Manual GBRS Designed by National Association for Sustainable Architecture in Spain. Accessed 13 September 2025. https://www.anas-sostenible.com/.
[51] De Garrido, L. 2025. “CEDES: A Complete, Legitimate and Seamless Green Building Rating System.” Journal of Sustainable Development 6 (18): 42-76.
https://doi.org/10.5539/jsd.v18n6p42.
[52] DGNB. 2023. “Deutsche Gesellschaft für Nachhaltiges Bauen“. DNGB System 2023—Technical Manual. Accessed 13 September 2025.
https://www.dgnb.de/en/certification/buildings/new-construction/version-2023.
[53] GBI. 2014. “Green Building Index”. 2014 V. 3.1—Technical Manual. Accessed 13 September 2025. https://www.greenbuildingindex.org/gbi-tools/https://www.greenbuildingindex.org/Files/Resources/GBI%20Tools/RNC%20Reference%20Guide%20V3.1.pdf (residential buildings). https://www.greenbuilding
index.org/Files/Resources/GBI%20Tools/RNC%20Reference%20Guide%20Amendment%20Notes%203.1.pdf.
[54] GG. 2022. “Green Globes”. Green Globes New Construction 2021—Technical Reference Manual Version 1.0—September 2022. Accessed 13 September 2025. https://thegbi.org/wpcontent/uploads/2022/11/
Green_Globes_NC_2021_ES__BEQ_Technical_Reference_Manual.pdf.
[55] GS. 2022. “Green Star”. Green Star Design & As Built V1.2—Technical Manual. Accessed 13 September 2025. https://s3.ap-southeast-2.amazonaws.com/hdp.au.prod.app.nthbchyoursay.files/1415/6214/8137/2018_701322__Green_Star_Design_and_As_Built_Submission_Guidelinev1.2_GBCA_1.PDF. https://www.gbca.org.au/shop/green-star-rating-tools/#.
[56] IGBC. 2019. “Indian Green Building Council”. IGBC Green New Buildings Rating Systems V3.0—Technical Manual. Accessed 13 September 2025.https://igbc.in/igbc-green-homes.php.
[57] LEED. 2019. “Leadership in Energy and Environmental Design”. LEED v4.1 Residential BD+C Multifamily Homes—Technical Manual. Accessed 13 September 2025. https://www.usgbc.org/tools/leed-certification/homes_CLASIFICACION.pdf. http://www.spaingbc.org/web/leedv4-1-bd+c.php.
SBTool. 2022. “Sustainable Building Tool”. SBtools for Performance Assessment 2022. Accessed 13 September 2025. https://www.iisbe.org/sbmethod.




